Genome Evolution

Genome evolution is the process by which a genome changes in structure over time, through mutation, horizontal gene transfer, and sexual reproduction. The study of genome evolution involves multiple fields including structural analysis of the genome, genomic parasites, gene and ancient genome duplications, polyploidy, and comparative genomics.

Darwin recognized the processes of speciation and the extinctions of species. We now understand many of the genome-scale processes occurring during evolution involving mutations, amplification, loss or homogenization of sequences; rearrangement, fusion and fission of chromosomes; and horizontal transfer of genes or genomes through polyploidy or other mechanisms. DNA sequence information, combined with appropriate informatic tools and experimental approaches including generation of synthetic hybrids, comparison of genotypes across environments, and modelling of genomic responses, is now letting us link genome behaviour with its consequences. The understanding of genome evolution will be of critical value both for conservation of the biodiversity of the plant kingdom and addressing the challenges of breeding new and more sustainable crops to feed the human population.

  • Changes in genome size and structure
  • Gene duplication
  • Genome speciation
  • Prokaryotic & eukaryotic genomes
  • Complex genome
  • Stem cell formation

Genome Evolution Conference Speakers

    Recommended Sessions

    Related Journals

    Are you interested in