DNA & Protein Substitution
DNA sequences is presented for use in phylogenetic estimation. A Markov process is used to describe substitutions between codons. Transition/transversion rate bias and codon usage bias are allowed in the model, and selective restraints at the protein level are accommodated using physicochemical distances between the amino acids coded for by the codons. Analyses of two data sets suggest that the new codon-based model can provide a better fit to data than can nucleotide-based models and can produce more reliable estimates of certain biologically important measures such as the transition/transversion rate ratio and the synonymous/nonsynonymous substitution rate ratio.
- Models of Substituion of protein and aminoacids
- Synonymous substitution
- Point mutation of DNA
- Replication and translation
Related Conference of DNA & Protein Substitution
18th World Congress on Advances in Stem Cell Research and Regenerative Medicine
20th World Congress on Tissue Engineering Regenerative Medicine and Stem Cell Research
18th International Conference on Human Genomics and Genomic Medicine
16th International Conference on Human Genetics and Genetic Diseases
19th International Conference on Genomics & Pharmacogenomics
DNA & Protein Substitution Conference Speakers
Recommended Sessions
- Animal Evolution
- Chromosomal Evolution
- DNA & Protein Substitution
- Driving forces of Evolution
- Genome Architecture
- Genome Evolution
- Molecular Evolution
- Molecular Genetics
- Molecular Oncology
- Molecular Phylogenetics
- Nucleic acid Evolution
- Plant Molecular Evolution
- Protein Evolution
- Role of ribosome and mitochondria
- Transcriptomics
Related Journals
Are you interested in
- Achieving efficient delivery and editing - CRISPR 2025 (Italy)
- Bioinformatics in Plant Sciences - Cellular Biology-2025 (Spain)
- Cancer and stem cells - CRISPR 2025 (Italy)
- Climate Change and Plant Adaptation - Cellular Biology-2025 (Spain)
- CRISPR technologies and society - CRISPR 2025 (Italy)
- CRISPR technologies beyond genome editing and gene regulation - CRISPR 2025 (Italy)
- Genome editing and gene regulation in human health - CRISPR 2025 (Italy)
- Genome editing and gene regulation in industrial bacterial biotechnology - CRISPR 2025 (Italy)
- Genome editing and gene regulation in industrial eukaryotic biotechnology - CRISPR 2025 (Italy)
- Genome Editing Methods and Novel Tools - CRISPR 2025 (Italy)
- Horizons of CRISPR biology - CRISPR 2025 (Italy)
- Phytochemical Analysis - Cellular Biology-2025 (Spain)
- Plant and Animal Biotechnology - CRISPR 2025 (Italy)
- Plant Biotechnology - Cellular Biology-2025 (Spain)
- Plant Cryobiology and Conservation - Cellular Biology-2025 (Spain)
- Plant Disease and Bryology - Cellular Biology-2025 (Spain)
- Plant Evolution and Phylogenetics - Cellular Biology-2025 (Spain)
- Plant Genetics and Genomics - Cellular Biology-2025 (Spain)
- Plant Hormones - Cellular Biology-2025 (Spain)
- Plant Metabolic Engineering - Cellular Biology-2025 (Spain)
- Plant Molecular Biology and Biochemistry - Cellular Biology-2025 (Spain)
- Plant Nanotechnology - Cellular Biology-2025 (Spain)
- Plant Nutrition and Soil Science - Cellular Biology-2025 (Spain)
- Plant Pathology and Mycology - Cellular Biology-2025 (Spain)
- Plant Sciences and Research - Cellular Biology-2025 (Spain)
- Plant Tissue Culture - Cellular Biology-2025 (Spain)
- Plant-based Medicine and Therapeutics - Cellular Biology-2025 (Spain)
- Plant-Soil Interactions and Microbiomes - Cellular Biology-2025 (Spain)
- Structural Biology and Bioinformatics - CRISPR 2025 (Italy)
- Synthetic Biology in Plant Science - Cellular Biology-2025 (Spain)
- Therapeutic Genome Editing - CRISPR 2025 (Italy)
- Urban Agriculture and Vertical Farming - Cellular Biology-2025 (Spain)