Genome Evolution
Genome evolution is the process by which a genome changes in structure over time, through mutation, horizontal gene transfer, and sexual reproduction. The study of genome evolution involves multiple fields including structural analysis of the genome, genomic parasites, gene and ancient genome duplications, polyploidy, and comparative genomics.
Darwin recognized the processes of speciation and the extinctions of species. We now understand many of the genome-scale processes occurring during evolution involving mutations, amplification, loss or homogenization of sequences; rearrangement, fusion and fission of chromosomes; and horizontal transfer of genes or genomes through polyploidy or other mechanisms. DNA sequence information, combined with appropriate informatic tools and experimental approaches including generation of synthetic hybrids, comparison of genotypes across environments, and modelling of genomic responses, is now letting us link genome behaviour with its consequences. The understanding of genome evolution will be of critical value both for conservation of the biodiversity of the plant kingdom and addressing the challenges of breeding new and more sustainable crops to feed the human population.
- Changes in genome size and structure
- Gene duplication
- Genome speciation
- Prokaryotic & eukaryotic genomes
- Complex genome
- Stem cell formation
Related Conference of Genome Evolution
20th World Congress on Tissue Engineering Regenerative Medicine and Stem Cell Research
18th International Conference on Human Genomics and Genomic Medicine
16th International Conference on Human Genetics and Genetic Diseases
19th International Conference on Genomics & Pharmacogenomics
Genome Evolution Conference Speakers
Recommended Sessions
- Animal Evolution
- Chromosomal Evolution
- DNA & Protein Substitution
- Driving forces of Evolution
- Genome Architecture
- Genome Evolution
- Molecular Evolution
- Molecular Genetics
- Molecular Oncology
- Molecular Phylogenetics
- Nucleic acid Evolution
- Plant Molecular Evolution
- Protein Evolution
- Role of ribosome and mitochondria
- Transcriptomics
Related Journals
Are you interested in
- Achieving efficient delivery and editing - CRISPR 2025 (Italy)
- Bioinformatics - HUMAN GENOME 2025 (France)
- Cancer and stem cells - CRISPR 2025 (Italy)
- Cancer Genomics - HUMAN GENOME 2025 (France)
- Cognitive Computing - HUMAN GENOME 2025 (France)
- Computational Biology - HUMAN GENOME 2025 (France)
- CRISPR technologies and society - CRISPR 2025 (Italy)
- CRISPR technologies beyond genome editing and gene regulation - CRISPR 2025 (Italy)
- Drug Detection & Development in Bioinformatics - HUMAN GENOME 2025 (France)
- Emergency Medicine - HUMAN GENOME 2025 (France)
- Epigenetics Biomarkers - HUMAN GENOME 2025 (France)
- Genetically Modified Organisms - HUMAN GENOME 2025 (France)
- Genome editing and gene regulation in human health - CRISPR 2025 (Italy)
- Genome editing and gene regulation in industrial bacterial biotechnology - CRISPR 2025 (Italy)
- Genome editing and gene regulation in industrial eukaryotic biotechnology - CRISPR 2025 (Italy)
- Genome Editing Methods and Novel Tools - CRISPR 2025 (Italy)
- Genome Mapping - HUMAN GENOME 2025 (France)
- Genomic Approach to Drug Discovery - HUMAN GENOME 2025 (France)
- Genomic Information in Medicine - HUMAN GENOME 2025 (France)
- Genomic Vaccination - HUMAN GENOME 2025 (France)
- Genomics - HUMAN GENOME 2025 (France)
- Horizons of CRISPR biology - CRISPR 2025 (Italy)
- Human Gene Therapy - HUMAN GENOME 2025 (France)
- Human Genetics - HUMAN GENOME 2025 (France)
- Infectious Diseases - HUMAN GENOME 2025 (France)
- Medicine Genomics - HUMAN GENOME 2025 (France)
- Personalized Medicine - HUMAN GENOME 2025 (France)
- Pharma Genomics & Pharma Informatics - HUMAN GENOME 2025 (France)
- Plant and Animal Biotechnology - CRISPR 2025 (Italy)
- Preimplantation Genetic Diagnosis - HUMAN GENOME 2025 (France)
- Structural Biology and Bioinformatics - CRISPR 2025 (Italy)
- Therapeutic Genome Editing - CRISPR 2025 (Italy)